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Received 3 June 1994, in final form 19 September 1994 

Absbact. We investigate branching point processes with an arbitrary number ofpoinitypes. 
based on the generaling functional technique. Every poinl can be characterized by a set of 
parameters such as time, space, energy. etc. The analyses have been done for a random 
number of identical stages with independent transformations. The set of functional equa- 
tions has been obtained for the determination o f  either the statistical characteristics of the 
resulting poiiit process or the parameters of the separate stage process The proposed 
approach lets us describe a wide range of random point processes and find mechanisms 
of their formation. We considered some specific models of electron multiplication in a 
microchannel plate, a photomultiplier tube and an avalanche photodiode. 

1. Introduction 

Processes of point multiplication take place in a variety of modern physics phenomena, 
such as photon and particle detectors, lasers, cosmic ray showers, neutron chain 
reactions, etc. Analysis of such processes has been performed by means of the mathe- 
matical lechnique of branching-point process theory [ 11. The technique of investigation 
is based mainly on the application of generating functions. It lets us determine the 
statistical characteristics of the number of points in the region of multiplication. Thus, 
the amplitude distribution of the single electron signal of a photomultiplier has been 
calculated [Z, 31. Also, some particular methods have been suggested for determining 
the time characteristics of the branching point process. The evolution of cavity radiation 
with immigration and dead time was investigated in [4,5]. Explicit expressions for 
the first two moments-intensity and correlation function-were provided. However, 
problems arise when we try to obtain time, space, energy, or any other characteristics 
of real physical objects participating in multiplication, simultaneously. For complete 
analysis of the branching point process i t  is worthwhile using generating functionals. 
The usefulness of such an approach was shown for the investigation of cascaded point 
processes [6,7]. However, analysis has been undertaken only for the Poisson point 
process as a formalization of the process at separate stages of multiplication. Also, only 
time characteristics of the points were considered. 

In lhis paper we do not restrict our investigation to any predefined type of random 
point process. We take into Consideration only the conimon assumption of the indepen- 
dence of transformations of points at each stage of multiplication and consider that 
the laws of transformation are identical for all points participating in multiplication. 
Every point is determined by an arbitrary set of parameters. Under such conditions we 
managed to obtain the set of functional equations in a closed form. Each functional 
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equation describes the distinct type of points and their transformations to other types. 
The procedure of functional differentiation gives the set of integral equations connecting 
particular statistical characteristics of a single stage and resulting processes, which can 
be solved analytically or numerically. 

1' V Apanasouich arid E G Nouikou 

2. Generating functionals 

A random point process is defined as a stochastic process with realizations, consisling 
of a collection of points, each one characterized by the vector coordinate 5 with an 
arbitrary set of components with well defined values. Let b ,  t2, . . . be the occurrences 
of a point process in the region Q=QI x x . , . , where Q, is the domain for the ith 
component. The probability generating functional (GFL) is defined as [8] 

where u(1) (-1 <u(r)<O) is the trial function which is used as a formal parameter, 
(. . .)e.n represents averaging along the point parameters and the number of points in 
the $2. After averaging, the last equation can be rewritten as 

i " 1  
L [ u : Q 1 = ~ 0 ; J ' , , ~ 8 ( p ~  ,... ,p , ,a)  i-l n l l + u ( p i ) l d p l . . . d p j  

where n , ( p , ,  . . . , p , ,  a )  d p I . .  . dp;, i = O ,  I , .  . . , are the joint probabilities of obtain- 
ing squarely i points in the intervals [PI , p ,  +dpl),  . . . , [pi ,pj+dpj)eQ. Also, sym- 
metrical moment functionsJ(p,, . . . ,,U,), i =  1,2, . . , , are often used. The expressions 
J (p l , .  . . , p,) dpl . . . dp,, i= 1,2,. . . , are the joint probabilities of obtaining at least 
i points in the intervals [ p , , p l + d p l ) ,  . . . , [ p i .  p , + d p ; ) ~ Q .  Furthermore, we shall 
call them correlation functions. The function of special interest is the intensity of random 
point processfi(p). 

By means of functional differentiation [9] one can obtain different stochaslic charac- 
teristics of the point process: 

The probability generation function (GF) is introduced as [IO] 
m 

O [ Z ,  a ] =  (2')"' P,(Q)zi=L[z-  1; Q ]  (3) 
1-0 

where 

is the probability of i points occurring in the 0, and z(O<z<I) is some auxiliary 
variable. 
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The models for the branching point process are based on the presentation of point 
processes as cluster random point processes [IO]. Consider the formation of a cluster 
process. We have some initial point process (called A)  in the region Q. Each point of 
this primary process independently from the others gives birth to the individual second- 
arypoint process (called B E .  where ( is thecoordinate ofthe initiatingpoint occurrence). 
All processes Bg are identical and differ from each other only by the coordinates of 
birth. Superposition of all secondary processes forms the cluster point process whose 
GFL can be written as 11 13 

L[u;Q]=L.4[L.9[u;511 ’ ; a ] -  1; a ]  (5) 
where LA[u; a ]  is the A process GFL, LB[u; Qlr; a ]  is the B, process conditional GFL. 
Equation (5) can be extrapolated to any number of secondary point process generations 
when each point at each generation independently of the other points gives birth to the 
secondary point process. 

3. Branching point process 

In  this section we consider a formalized model for the branching point process. 
Every point is characterized by the vector coordinate of birth p EQ with an arbitrary 

set of components, by its type and by its capability to produce points at the next stage. 
Point type determines different laws of transformation and different sets of components 
in the point’s vector coordinate participating in multiplication. It corresponds to the 
different physical nature of real objects in the multiplication process. The capability to 
produce points means that every point can generate a point process at the next stage 
(producing point) or not (unproducing point). We suppose that all points after some, 
generally speaking, random number of multiplication stages become unproducing with 
probability I .  Also, we are interested in the statistical characteristics of the point process 
without multiplication, that is, the process consisting of the unproducing points. 

Let L A [ o ; n ; u ; Q ]  be the GFL of the initiating point process, where U =  
{ul(p). . . . , U,&)} and U =  (u l (v) ,  . . . , o.(v)) are the probe functions of producing 
and unproducing points, respectively, and n is the number of point types. 

Consider the [th stage of multiplication. After ( I -  1) stages, points with coordinates 
p c , ,  p+], . . . (producing points), v ; ! ~ ,  v ! ? ~ , .  . . (unproducing points), i =  1, .  , . , n, 
have been generated. Their GFL is L ~ - i [ u ;  a; U ;  a].  Every point with coordinate 
produces a random number of producing points of all types, whose coordinates are 
pfau,’,p= 1 , .  . . , n; k = 1 , .  . . , o r  transform into an unproducing point with coordinate 

, q= I ,  . . . , n; 117= I ,  . . . , independently of the other points born at the ( I -  1)th 
stage. Their GFL is G[u; 8; U ;  .Qlpj’L~]. So the process of transformation consists of 
either generation of the producing points or tramformation into the unproducing point. 
The laws of generation and transfonnation for each point of the ( I -  I)th stage are 
identical and differ from each other only by the point’s coordinate. 

The resulting process after I stages consists of producing points of all types, whose 
coordinates are p v ,  j =  1,2, . . . , i= I ,  . . . , n, and unproducing points of all types after 
( I -  1) stages of multiplication, whose coordinates are v:.‘, j =  1, 2, . . . , i= I ,  . . . , n, P =  

I , .  . . , I .  According to equation ( 5 ) ,  the GFL of the resulting process after I stages is 
given by 

I i zi 

“yti.? 

..  

L,[u;O; U ; Q ] = L i -  ,[7J;R; LAIU;a;u;nlp;-l] - 1 ;a, ;. . . ;L;;[U;a;U;aIp;- I]- 1 ;a#] 
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where G P L  4- ][U; 0; 11; a] can be written as 

V V Apanasovich and E G Novikov 

4 ~ 1 [ v ; a ; ~ ' ; ~ l = ~ , - l [ v : n ; u l ~ ~ ~ ; ~ l ;  u2(p ) ;512; .  , . ; U n ( p ) ; Q " l  

and high index j in fl', vfi  is omitted. 
As the laws of generation and transformation are independent of the number of 

stage, that is, the points at each stage are the result of identical multiplications, the last 
equation takes the form 

L,[u; a ;  U ;  a]  
=Ll[?J;a; 

Lb[v; a; .  . . 
Lb[u; a;  G[v; R;  U;Rlp;-ll- 1 ;a , ; .  . . ; 
L ~ ~ v ; a ; U ; n l p ~ - l l - l ; ~ l p ~ - ~ l - I ; a l ;  

4 [ u ; a ; L ~ [ u ; n ; u ; n l p :  -I]-l;al;... ; 
Li[v; n; U ; n l p ; - l ] -  1 ; %IpY-2] - I ;  91 . . . ptll- 1 ;a,; 

L;[v;  n; . . . 
G[u; 8; L$v; n; U ;  n(pL1] - 1 ;a1 ; . . . ; 
L"uv;n;u,nlp;-11-1 ;n"lp:-21- I ; Q , ;  

L;[v; n; G[v; a;  U ;  
G[v; R; U ;  alp;-,] - I ;41p;-*] - 1; ani . . . p7] - 1 ;a.] 

- I ; n, ; . . . ; 
(6) 

Denoting the GFL of points after I stages, initialed by the point of type i wIith 
where L l [ v ;  Q; U ;  a ]  is the GFL of initiating points. 

coordinate j i ' ,  by Q$v; a;  U ;  alp'], we have 

Qi[u;Q; U ;  Qlp'l 
=&[U; 0; Qj- I[ U ;  62; U ;  Ql . ] - 1 ; RI ; . . . ; Q;- ,[U; R; U ;  a1 . ] - 1 ; Q.lp('] 

i = l ,  ..., n. (7) 

lim Ll[v;R; U; R ] = L r [ v ;  RI (8) 

where L,[v;zL] is the GFL of the resulting point process. The same expression takes 
placefor t h e c m  Qav;SL;u;nlp'],i=l, . . .  , n :  

If, after some multiplication stages, all points become unproducing, one can obtain 

;-li 

lim Q,[ U ;  51; U ; nl p'] = Q'[ U ;  S2l p']. (9) 
I-a, 

In this case, e'[.; a l p ]  can be interpreted as the GFL of the resulting point process, 
initiated by the point of type i with birth coordinate p i .  
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Letting I go to infinity in  equation (7) and taking into account equation (9), we 
 have^ 
Q [ v ;  Q l p ' ] = G [ u ;  a;  e'[.; nj . ] -  I ; n, ; . . . ; p [ U ;  a1 '1- I ;  Q l p ' ]  

i = l , .  . . ,n. (10) 

( 1  1) 

Combining equations ( 6 )  and (8) yields 

L , [ v ; R ] = L I [ u ; C l ;  Q'[u;  sll . ] - 1 ; s L 1 ; .  . . ; Q"[u; RI . ] - I ;  Q]. 

Equations (10) and ( I  1) are Ihe set of functional equations for obtaining different 
statistical characteristics of the resulting point process when parameters of the separate 
stage process are known and vice versa-i.e. to get the statistical parameters of the 
separate stage process based on the characteristics of the resulting process. 

There are a few situations when we can evaluate equation (IO) directly. Mostly we 
have to make use of functional differentiation (equations ( I )  or (2) )  of equation (IO) 
up to the necessary degree when u=O or v = ' - l .  This technique gives integral equations, 
containing correspondent stochastic characteristics of single stage points of any type 
and resulting process. 

Equations for the GF (equation (3)) can be obtained from equations (IO) and (1  1) 
by substituting variable z- 1 for function U :  

aipi~=c;[z- I ;  a; e,[i; ai . I -  1 ;  a, ; . . . ; e,[z: a;  I . I -  1 ;  anipfi 
i = l , .  . . ,n. (12) 

e,[z; a ]=  L , [ ~ -  I ; a;  el[z; ai .I - I ; n, ; . . . ; s,,[z; ai . I  - I ; an]. (13) 
Oi[-?; 4 p ]  can be determined by numeric evaluation of equation (12) when GFL 

Lb[v;SL;u;Q(p'],  i = l , . .  . , n .  is known. 
Furthermore, we shall restrict our consideration to the case when points of only 

one type can take part in inultiplication. So n = I and the set of equations for GFL ( IO) ,  
( I  1) takes the form 

O[z;nlp]=L,[z-1;8; Q[z;.Q .]-I;QlpJ (16) 
o,p; a I =  L , [ ~ -  1 ; a: (17) al. 1 - I ; n]. 

It is clear that all results obtained in this case can be extrapolated to the situation 
with any number of point types. 

4. Dei-icices with secondary electron multiplication 

Microchannel plates (MCY), photomultiplier tubes (PMT), and avalanche photodiodes 
(APD) are widely used in a variety of systems for the transformation of an optical field 
into photoelectron flow and further amplification of the signal. Processes of amplifica- 
tion, based on the avalanche multiplication of electrons, naturally lead to the distortion 
of the outpul signal. Up to now, particular analytical results have been obtained only 
for some special cases of electron multiplication in the channel of MCP [12-15], PMT 
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[16-181 and APD [ 19-21]. The main problem of the theoretical investigation of func- 
tional properties of  such devices generally involves the continuous amplification region, 
and the random number of multiplication cascades (i.e. the output signal is formed by 
the electrons released at each cascade). The usual technique, based on the generating 
functions, sometimes gives reasonable results for the conventional PMT'S where the 
multiplication system is discrete with a definite number of dynodes; however, for the 
analysis of MCP or APD multiplication it is not quite as well suited. 

The detection process begins when the initiating particle (i.e. photoelectron, photon, 
ion, etc) is directed to the amplification region of the device. It can be the channel 
surface of the MCP, dynode system of the PMT or the depletion layer of the junction of 
the APD. There the initiating particle produces some secondary electrons. Each one, 
accelerated by the applied field, strikes the channel wall in the MCP or the next dynode 
in the PMT or ionizes atoms in the APD, producing some secondaries itself. This process 
is repeated many times while passing through the amplification region until finally the 
electron avalanche reaches the anode or output electrode. 

Functional equations (14) and (15) let us determine the output signal characteristics 
if the characteristics of electrons at a single cascade and the characteristics of the 
initiating particles are known. We can make use of functional differentiation of equa- 
tions (14) and (15) with respect to U up to the necessary degree when v = O  or U =  l. 
This technique gives integral equations, containing corresponding stochastic character- 
istics of the output electrons, electrons ejected after one cascade, and initiating particles. 

Furthermore, we shall accept that electrons in the amplification region can be intro- 
duced as producing points and electrons that have left it as unproducing points. In this 
case, producing and unproducing points are distinguished by their space coordinates. 
So we can connect the probe function of producing points Y with the amplification 
region, termed G, and the probe function U of unproducing points with the output 
electrode or anode region, termed S.  

As one can see, equations (14) and (15) can be solved if the single stage GFL 
& [ U ;  S; U ;  Glp] is known. It can be written for the considered earlier multiplication 
processes as 

L [ v ; S ;  U ;  q p ] = J  h (v lp ) ( [ l  + i c ( v ) ~ ~ " - " > , , , ~ ~ - , ,  dv+ h( v [ p ) [ l  +U( v)]dv (18) 

where h ( v ( p )  is the probability density that the electron, born at the point with coordi- 
nate p ,  hits the point with coordinate v ;  (. . .) is the averaging along the number of 
electrons n t f v - p ) ,  whose birth coordinate is v ,  ejected by the electron with birth 
coordinate p. The first term in the right-hand side of equation (1  8) describes the collision 
of electrons (point process of multiple points) and the second term describes electrons 
leaving the region of multiplication. 

The GP of the number of outpul electrons B [ z ;  Sip]  can be determined by numerical 
evaluation of (16). Taking into account equation (18). equation (16) can be rewritten 
as 

V V Apanasovicli and E G Novikoo 

G s, 

B [ z : S l p ] = j  /r(v(/~)(O""'-"'[z; v ] ) , , 8 r v . - p , d ~ + z  B(v(p)  dv. 
G s, (19) 

Jt is a nonlinear integral equation, which has no analytical solution in the common 
case. Amplitude characteristics can be found by differentiation of equation (19) with 
respect to the variable z when i = O  or - = I .  
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5. Microclrannel plate 

As the results for the gain and time distribution of the single electron signal for the 
MCP have been obtained previously [ 151, in this section we are going to discuss problems 
of pulse-height distribution calculation. 

In this case, coordinate p can be still considered as a set of components such as 
space, time, energy, and radial or azimuthal coordinates. The producing or unproducing 
property of the electron is determined only by its space coordinate along the channel 
axis. 

The pulse-height distribution of the output electron signal can be evaluated from 
equation (16). By means o f  differentiation with respect to z when z=O, one can obtain 
the probabilities P(ir1p) of the emerging n electrons at the channel output, initiated by 
the electron with birth coordinate p : 

P(Olp)=I h(v l~)F[v-p ,  P(0lv)l dv 

P( I Ip 1 = 

G 

W v ,  p)P(1  I v )  d v + h(vlp ) dv (20) 
G s, 

P W p )  = W(v, p)P(nl r3  d v + W l r )  n,2 
c 

where 

P c n tP"( I IY)F~aI") [v-p,  P(0Iv)l 
j , i ,+ .  , .+jnir=n.i,+n , = I  1: 

W v ,  P)=h(vlP)Fh d v - l ~ ,  P(O1 v)l 

forn>2, w h e r e ~ = Z r = ~ j , ,  sumj,i,+. . , +jPi,,=n means picking out all combinations 
of values of the indexesj,, i,, r=  1, .  . . , p ,  producing in sum the value n, where ik#in,, 
when k#nt,  k , i n = l ,  . .  . , p .  

The recurrent expressions (20) let us obtain the pulse-height probabilities for any 
kind of single cascade distributions. In order to obtain the resulting expressions for the 
pulse-height distribution, one has to average these equations along the initiating particle 
coordinates and the number of  electrons ejected from the channel wall by the initiating 
particle. It can be done also by means of differentiating equation (17) with respect to 
z when z = O ,  in the same way as equations (20) were obtained. 

I f  the single cascade pulse-height distribution is given by the Poisson law [IO], so 

([I +u(v)~'"'"-"),.c,.-~) =exp{ic(v--p)u(v)} 

F [ v  - P ,  u ( v ) l =  expI K(V - ~ ) u ( v ) I  

G d v  - P, u(v)l= { K ( V  - P)}" exp{h( v - ~ ) u ( v ) l  
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where ~ ( v - p )  is the average number of the electrons ;n( v - p )  whose birth coordinate 
is v ,  ejected by the electron with birth coordinate p .  Probabilities P ( J I ~ ~ )  of the emerging 
~t electrons at the channel output, initiated by the electron with birth coordinate p ,  
yield 

V V Apanasovich and E G Nouikov 

P ( n l ~ ) =  h(vlp)Wl v, P )  dv nb2 
JG 

where 

+K(V-P)WOIV,P) N51P)WnIt. v) d5. (21) 
JG 

The solution of the integral equation (21) can be obtained, for example, by means of 
the numerical iteration method. 

G. Photomultiplier tube 

A lot of information devoted to the analysis of PMT can be found in the literature. 
However, only the simplest cases of electron multiplication allow us to obtain analytical 
models in the closed form, convenient for further calculations. Effects such as the losses 
of electrons in the dynode system, transit of an electron by the dynode, and non- 
Poisson single dynode statistics, are still difficult to investigate. Here we try to apply 
the previously introduced technique for the description of the conventional PMT. We 
shall assume that each electron possesses two components of coordinate: time and the 
number of the dynode where it was bom. 

Conventional PMT single-stage CFL can be written as 

&[U; S ;  U ;  m, rl 
= : p ( j l k ) [  ~r(~,ly,k,j)~((I+u(j,q))'"'~~'~"~' ) W J . C . Y )  dP 

I -  I U 

+ P ( N +  1 Ik) J ~ ~ ( q l y ,  k ,  N+ 1 ) ( 1 +  v(k,  P)) dq (22) 
L' 

where N is the number of dynodes, &[v; S ;  U ;  Glk, y ]  is the CFL of the output electrons, 
produced by the electron born at the kth dynode at time y ,pGlk )  is the probability of 
the eleclron, born at the kth dynode, striking the dynode of numberj (the N+ 1 dynode 
is the anode), w(9, I y, k ,  j )  is the time probability distribution of obtaining an electron 
at instant 9 at the dynode j ,  provided it was at instant y at the dynode k .  This GFL 
describes the electron flow from one dynode to the others and takes into account the 
electron losses in the dynode system and transit by dynodes. 

As an example, we now consider the problem of determining the PM'r single-electron 
signal time distribution. By differentiating equation (14) with respect to U, taking into 
consideration equation (22), we can obtain the set of integral equations for the intensity 
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function of electrons at the output, produced by a single electron from the inth dynode, 
born at instant y :  

N 

g(tly, r i d =  C f ( j l @  / ' l d ~ l y , w j ) g ( d q , j )  dp, 
j -  I 0 

+ p ( N +  Ilni)w(/ly, in, N+1) m= I ,  2, . . . (23) 
where f ( j n r )  is the intensity of the electrons at the j th  dynode, ejected by one electron 
from the nzth dynode. Denoting w(ql y, n i , j ) = w * ( q - y / n ? , j ) ,  g(tlq,j)=g(t-qlj), 
Laplace transformation of (23) gives 

N 

g(slm)= C fGlni)w(slnz, j)g(s[i) 
,=I 

+ p ( N +  Ilni)iu(slm, N +  1) in= I , .  . . , N .  

This set of linear algebraic equations can be solved and the Laplace transformation of 
the time intensity of the output signal from every dynode m= I , .  . . , N obtained. Let 
us consider some examples with an analytical solution of this system. Assuming that 
the transit of dynodes is absent and characteristics of multiplication are independent 
of the number of dynode, i.e. 

f(nr+i~m)=O i=0 ,2 ,3 , . .  . , m = I , .  . ., N 
f ( i i l +  l \m)=f w(s(in, in+ 1)= w(s) m=l,. . . , N  

the last equation takes the form 

g(sln7) =fiv(s)g(slm + I )  in= 1,. . . , N .  

Its solution is 

g(sln1) = [ fis(s)]N -'" + I. 

For the second inultiplier in the right-hand side of the last expression, the inverse 
Laplace transform gives N -  in + I-fold convolution of probability distribution function 
w. The exact analytical expression for g(zlin) can be obtained when W ( T )  is known. 
Let us put 

W ( T )  = r/(b-a){exp(-az) -exp( -bT)} 

and ~~(,~)=r/(~+u)/(s+O), where r, U, b are the characteristics of the single-dynode 
electron time distribution. Then the resulting time distribution will be written as 

exp(-bt)] . x [ e x p ( - a t ) + ( - ~ ) - ~ + ' - ' ~  I 
7. Avalanche Photodiode 

The statistical nature of the multiplication processes in the depletion layer of an APD 
gives rise to the high level of APD noise. Noise characteristics of the APD in the main 
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determine functional properties of the device and should be taken into account when 
electronic equipment of detectors i s  designed. The noises of APD, as a rule, are charac- 
terized by noise factor F, introduced as 

F=M2/M: 

V I’ Apunusovick und E C Nuvikou 

where MI is the APD mean value of gain and M2 is its second-order moment. 
The general model of branching point processes, presented in section 3, let us build 

an analytical model of APD electron multiplication without any restriction to the type 
of probability distribution for ionized particles in the amplification region. 

For the determination of the noise factor we can retain in our model only the linear 
space coordinate of the electron birth. We define q(y1.x) as the probability density 
function of the distance (flight of the electron) between two points of ionization y and 
x. Single-stage multiplication CFL in this case can be written as 

Lo[u;S;u;Glxl= d Y l x ) [ 1 + u ( ~ ) l ~ d ~ +  q(YIx)[l+N~)ldY. (24) s, J: 
Combining equations (16) and (24) yields 

s l ; , ? = I L g ( y l r ) s 2 [ . - l y ] d y + n  I“ g(ylx) dy. (25) 

Mdx) = W(zlx)lz- I = 2 Ix g( y - x ) M ~ ( y )  dy + g( y -x) dy 

Equation (25) is an integral equation for the determination of OF of the electrons, 
obtained at the output electrode, initiated by an electron with birth coordinate x. 
Differentiating equation (25)  with respect to z, we can obtain the moments of any order 
for output electrons. For example, the first-order moment takes the form 

L m 

(26) 
L 

and the second-order moment 

Mz(x)=s”( l lx) l : - I  +MI(.%) 

= 2 Iz‘g(y - x)M203 dy + 2 lXL g ( ~  - X)[MI(Y)I~ dy+ JLm g ( v  - x )  dy. (27) 

Integral equations (26) and (27) are fundamental to the determination of amplification 
characteristics of the signal in an APD. In order to obtain the resultant expressions for 
MI and Af, we have to average these equations along the initiating particle space 
coordinate and specify kernel function g(y -x). 

If the distance between two ionizations is exponentially distributed, i.e. 

g( Y )  = a exp { -VI U , Y > O  

then 

M,(s) = exp{ u(L - x)} 

Mz(x) = exp(u(~-x)}[2 exp{a(l-x)) - I] 
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and the noise factor takes the form 

~ ( r )  = M2(x)/M:(x) = 2 -exp{ -ax} .  

r the bran1 

8. Conclusion 

In this uauer we have built uu the mathematical mo I .  ing point process 
with independent transformations for a random number of identical stages which lets 
us obtain either the statislical characteristics of the resulting point process or the param- 
eters of the separate stage process. It is supposed that the scheme of branching is known. 
This model can be applied to a wide range of phenomena in nuclear physics, optics, 
biology, etc. 

The approach offered was applied to the analysis of secondary electron amplification 
in devices with secondary electron multiplication: microchannel plates, photomultipliers 
and avalanche photodiodes. 

The technique described is also perfectly suited for the analysis of a variety of 
processes in quantum optics and the designing of computer simulators of random point 
processes. These problems are currently also under our consideration. 
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